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Emerginginfectious diseases, such as SARS and Zika, present a majorthreat to public
health!, Despite intense research efforts, how, when and where new diseases appear
arestill the source of considerable uncertainly. A severe respiratory disease was
recently reported in the city Wuhan, Hubei province, China. Up to 25th of January
2020, atleast 1,975 cases have been reported since the first patient was hospitalized on
the12th of December 2019. Epidemiological investigation suggested that the
outbreak was associated with a seafood market in Wuhan. We studied one patient who
was a worker at the market, and who was admitted to Wuhan Central Hospital on 26th

of December 2019 experiencing a severe respiratory syndrome including fever,
dizziness and cough. Metagenomic RNA sequencing* of abronchoalveolar lavage
fluid sample identified a novel RNA virus from the family Coronaviridae, designed
here as WH-Human-1coronavirus. Phylogenetic analysis of the complete viral genome
(29,903 nucleotides) revealed that the virus was most closely related (89.1%
nucleotide similarity) toa group of SARS-like coronaviruses (genus Betacoronavirus,
subgenus Sarbecovirus) previously sampled from bats in China. This outbreak
highlights the ongoing capacity of viral spill-over from animals to cause severe disease

inhumans.

The patient studied was a41-year-old manwith no history of hepatitis,
tuberculosis or diabetes. He was admitted and hospitalized in Wuhan
Central Hospital on December 26, 2019, 6 days after the onset of ill-
ness. The patient reported fever, chest tightness, unproductive cough,
pain and weakness for one week on presentation (Table 1). Physical
examination of cardiovascular,abdominal and neurologic examination
was normal. Mild lymphopenia (Iess.than 900 cells per cubic milli-
meter) was observed, but white blood celland blood platelet count
was normalinacomplete blood count (CBC) test. Elevated levels of the
C-reactive protein (CRP, 41.4 mg/L of blood, reference range 0-6 mg/L)
was observed and levels of aspartate aminotransferase, lactic dehydro-
genase, and creatinekinase were slightly elevated in blood chemistry
tests. The patient had mild hypoxemia with oxygen levels of 67mmHg
by the Arterial Blood Gas (ABG) Test. Onthe first day of admission (day
6 after the onset of'iliness), chest radiographs were abnormal with air-
space shadowing such as ground-glass opacities, focal consolidation
and patchy consolidation in both lungs (Extended Data Fig. 1). Chest
computed tomographic (CT) scans revealed bilateral focal consolida-
tion, lobar consolidation and patchy consolidation, especially in the
lower lung. A chest radiograph revealed a bilateral diffuse patchy and
fuzzy shadow on day 5 after admission (day 11 after the onset of illness).
Preliminary aetiological investigation excluded the presence of influ-
enzavirus, Chlamydia pneumoniae and Mycoplasma pneumoniae by

commercial pathogen antigen detection kits and confirmed by PCR.
Other common respiratory pathogens, including adenovirus, were
also negative by qPCR (Extended Data Fig. 2). Although combination
antibiotic, antiviral and glucocorticoid therapy were administered,
the patient exhibited respiratory failure and was given high flow non-
invasive ventilation. The condition of the patient did notimprove after
three days of treatment and he was admitted to the intensive care unit
(ICU). The patient was transferred to another hospital in Wuhan for
further treatment 6 days after admission.

Epidemiological investigation by the Wuhan Center of Disease Con-
trol and Prevention (CDC) revealed that the patient worked at alocal
indoor seafood market. Notably, in addition to fish and shell fish, a
variety of live wild animalsincluding hedgehogs, badgers, snakes, and
birds (turtledoves) were available for sale in the market before the
outbreak began, as well as animal carcasses and animal meat. No bats
were available for sale. While the patient might have had contact with
wild animals in the market, he recalled no exposure to live poultry.

To investigate the possible aetiologic agents associated this dis-
ease, we collected bronchoalveolar lavage fluid (BALF) and performed
deep meta-transcriptomic sequencing. The clinical specimen was han-
dled in a biosafety level 3 laboratory at the Shanghai Public Health
Clinical Center. Total RNA was extracted from 200ul BAL fluid and a
meta-transcriptomic library was constructed for pair-end (150 bp)

'Shanghai Public Health Clinical Center & School of Public Health, Fudan University, Shanghai, China. 2Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan,
Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China. *Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China. “Department of
Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China. *Marie Bashir Institute for
Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia. °These authors contributed
equally: Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu. *e-mail: zhangyongzhen@shphc.org.cn

Nature | www.nature.com | 1


https://doi.org/10.1038/s41586-020-2008-3
mailto:zhangyongzhen@shphc.org.cn

Article

sequencing using an lllumina MiniSeq as previously described*”.
In total, we generated 56,565,928 sequence reads that were de novo
assembled and screened for potential aetiologic agents. Of the 384,096
contigs assembled by Megahit®, the longest (30,474 nucleotides [nt])
had highabundance and was closely related to abat SARS-like corona-
virus isolate - bat-SL-CoVZC45 (GenBank Accession MG772933) - pre-
viously sampled in China, with a nt identity of 89.1% (Supplementary
Tables1and 2). The genome sequence of this novel virus, as well as its
termini, were determined and confirmed by RT-PCR® and 5'/3' RACE kits
(TaKaRa), respectively. This new virus was designated as WH-Human
1coronavirus (WHCV) (and has also been referred to as '2019-nCoV")
andits whole genome sequence (29,903 nt) has been assigned GenBank
accessionnumber MN908947. Remapping the RNA-seq dataagainst the
complete genome of WHCV resulted in an assembly of 123,613 reads,
providing 99.99% genome coverage at amean depth of 6.04X (range:
0.01X-78.84X) (Extended Data Fig. 3). The viral load inthe BALF sample
was estimated by quantitative PCR (qPCR) to be 3.95x108 copies/mL
(Extended DataFig. 4).

The viral genome organization of WHCV was characterized by
sequence alignment against two representative members of the
genus Betacoronavirus: ahuman-origin coronavirus (SARS-CoV Tor2,
AY274119) and abat-origin coronavirus (Bat-SL-CoVZC45, MG772933).
The un-translational regions (UTR) and open reading frame (ORF)
of WHCV were mapped based on this sequence alignment and ORF
prediction. The WHCV viral genome was similar to these two corona-
viruses (Fig.1and Supplementary Table 3), with a gene order 5'-rep-
licase ORFlab-S-envelope(E)-membrane(M)-N-3'. WHCV has 5' and
3'terminal sequences typical of the betacoronaviruses, with 265 nt
at the 5' terminal and 229 nt at the 3' terminal region. The predicted
replicase ORFlab gene of WHCV is 21,291 nt in length and contained
16 predicted non-structural proteins (Supplementary Table 4), fol-
lowed by (at least) 13 downstream ORFs. Additionally, WHCV shares
a highly conserved domain (LLRKNGNKG: amino acids 122-130) with
SARS-CoVinnspl. The predicted S, ORF3a, E,Mand N genes of WHCV
are 3,822, 828,228, 669 and 1,260 nt in length, respectively. In addi-
tion to these ORFsregions that are shared by all members of the sub-
genus Sarbecovirus, WHCV is similar to SARS-CoV in that it carries a
predicted ORF8 gene (366 nt in length) located between the M and
N ORF genes. The functions of WHCV ORFs were predicted based on
those of known coronaviruses and given in Supplementary Table 5.
In a manner similar to SARS CoV Tor2, aleader transcription regula-
tory sequence (TRS) and nine putative body TRSs could be readily
identified upstream of the 5' end of ORF, with the putative conserved
TRS core sequence appeared in two forms - the ACGAAC or CUAAAC
(Supplementary Table 6).

To determine the evolutionary relationships between WHCV and
previously identified coronaviruses, we estimated phylogenetic trees
based on the nucleotide sequences of the whole genome sequence,
non-structural protein genes ORFla and 1b, and the main structural
proteinsencoded by theS, E,Mand N genes (Fig.2 and Extended Data
Fig.5).Inall phylogenies WHCV clustered with members of the subge-
nus Sarbecovirus, including the SARS-CoV responsible for the global
SARS pandemic of 2002-2003"?, as well as anumber of SARS-like coro-
naviruses sampled from bats. However, WHCV changed topological
position within the subgenus Sarbecovirus depending on which gene
was used, suggestive of a past history of recombination in this group of
viruses (Fig.2 and Extended DataFig. 5). Specifically, in the Sgene tree
(Extended DataFig.5), WHCV was most closely related to the bat coro-
navirus bat-SL-CoVZC45 with 82.3% amino acid (aa) identity (and ~-77.2%
aaidentity to SARS CoV; Supplementary Table 3), while in the ORF1b
phylogeny WHCV fell in a basal position within the subgenus Sarbeco-
virus (Fig. 2). This topological division, likely reflecting recombination
among the bat sarbecoviruses, was also observed in the phylogenetic
trees estimated for conserved domains in the replicase polyprotein
pplab (Extended Data Fig. 6).
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To better understand the potential of WHCV to infect humans, the
receptor-binding domain (RBD) of its spike protein was compared to
those in SARS-CoVs and bat SARS-like CoVs. The RBD sequences of
WHCV were more closely related to those of SARS-CoVs (73.8%-74.9%
aaidentity) and SARS-like CoVs including strains Rs4874, Rs7327 and
Rs4231(75.9%-76.9% aa identity) that are able to use the human ACE2
receptor for cell entry (Supplementary Table 7)*°. Inaddition, the WHCV
RBD was only one amino acid longer thanthe SARS-CoV RBD (Extended
Data Fig. 7a). In contrast, other bat SARS-like CoVs including the Rp3
strain that cannot use human ACE2", had amino acid deletions at posi-
tions473-477 and 460-472 compared to the SARS-CoVs (Extended Data
Fig. 7a). The previously determined® crystal structure of SARS-CoV
RBD complexed with human ACE2 (PDB 2AJF) revealed that regions
473-477 and 460-472 directly interact with human ACE2 and hence
may be important in determining species specificity (Extended Data
Fig.7b). We predicted the three-dimension protein structures of WHCV,
Rs4874 and Rp3 RBD domains by protein homology modelling using
the SWISS-MODEL server and compared them tothecrystal structure of
SARS-CoVRBD domains (PDB2GHV) (Extended DataFig.7c-f).Inaccord
withthe sequence alignment, the predicted protein structures of WHCV
and Rs4874 RBD domains wereclosely related to that of SARS-CoVs and
different fromthe predicted structure of the RBD domain fromRp3.1In
addition, the N-terminus of WHCV S protein is more similar to that of
SARS-CoV rather than other human coronaviruses (HKU1and OC43)
(Extended Data Fig. 8) that can bind to sialic acid™. In sum, the high
similarities of amino acid sequences and predicted protein structure
between WHCV and SARS-CoV RBD domains suggest that WHCV may
efficiently use human ACE2 as a cellular entry receptor, potentially
facilitating human-to-human transmission'®*™,

To further characterize putative recombination events in the evo-
lutionary history of the sarbecoviruses the whole genome sequence
of WHCV and four representative coronaviruses - Bat SARS-like CoV
Rp3, CoVZC45, CoVZXC21 and SARS-CoV Tor2 - were analysed using
the Recombination Detection Program v4 (RDP4)'. Although the
similarity plots suggested possible recombination events between
WHCV and SARS CoVs or SARS-like CoVs (Extended Data Fig. 9), there
was no significant evidence for recombination acrossthe genome asa
whole. However, some evidence for past recombination was detected
inthe S gene of WHCV and SARS CoV and bat SARS-like CoVs (WIV1
and RsSHCO014) (p<3.147x107 to p<9.198x10°°), with similarity plots
suggesting the presence of recombination break points at nucleotides
1,029 and 1,652 that separated the WHCV S gene into three regions
(Fig. 3). In phylogenies of the fragment nt 1to 1029 and nt 1652 to the
end of the sequence, WHCV was most closely related to Bat-SL-CoVZC45
and Bat-SL-CoVZXC21, whereasin the region nt 1030 to 1651 (the RBD
region) WHCV grouped with SARS CoV and bat SARS-like CoVs (WIV1
and RsSHCO014) that are capable of direct human transmission™".
Despite these recombination events, which seem relatively common
among the sarbecoviruses, there is no evidence that recombination
has facilitated the emergence of WHCV.

Coronaviruses are associated with anumber of infectious disease out-
breaksin humans, including SARSin2002/3 and MERS in 20128, Four
other coronaviruses -human coronaviruses HKU1, 0C43,NL63 and 229E
- are also associated with respiratory disease' *2. Although SARS:-like
coronaviruses have been widely identified in mammals including bats
since2005in China®* %, the exact origin of human-infected coronavi-
ruses remains unclear. Herein, we describe anovel coronavirus - WHCV
(2019-nCoV) -in BALF from a patient experiencing severe respiratory
disease in Wuhan, China. Phylogenetic analysis suggested that WHCV
represents anovel virus within genus Betacoronavirus (subgenus Sar-
becovirus) and hence that exhibits some genomic and phylogenetic
similarity to SARS-CoV', particularly in the RBD. These genomic and
clinical similarities to SARS, as well as its high abundance in clinical
samples, provides evidence for an association between WHCV and
the ongoing outbreak of respiratory disease in Wuhan. Although that



the isolation of the virus just from a single patient is not sufficient to
conclude that it caused the respiratory symptoms, our findings have
beenindependently corroborated in further patients®.

Theidentification of multiple SARS-like-CoVsinbatsled to theidea
that these animals act as the natural reservoir hosts of these viruses'*.
Although SARS-like viruses have beenidentified widely in bats in China,
viruses identicalto SARS-CoV have not yet been documented. Notably,
WHCV is most closely related to bat coronaviruses, even exhibiting
100% aasimilarity to Bat-SL-CoVZC45inthe nsp7 and E proteins. Hence,
these data suggest that bats are a possible reservoir host of WHCV.
However, as avariety of animal species were for sale in the market when
the disease was first reported, more work is needed to determine the
natural reservoir and any intermediate hosts of WHCV.
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Table 1| Clinical symptoms and patient data

Characteristic Patient

Age (Year) /1

Sex M

Date of illness onset Dec 20,2019
Date of admission Dec 26,2019
Signs and symptoms

Fever +

Body Temperature (°C) 38.4

Cough +

Sputum Production +

Dizzy +
Weakness +
Chesttightness +

Dyspnea +

Bacterial culture -
Glucocorticoid therapy No
Antibiotic therapy Cefoselis
Antiviral therapy Oseltamivir

Oxygen therapy

mechanical ventilation

Nature | www.nature.com | 7
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Methods

Cases and collection of clinical data and samples

A patient presenting with acute onset of fever (>37.5 °C), cough, and
chest tightness, and who were admitted to Wuhan Central Hospital in
Wuhan city, China, was considered as a suspected case. During admis-
sion, bronchoalveolar lavage fluid (BALF) was collected and stored at
-80 °C until further processing. Demographic, clinical and laboratory
datawasretrieved from the clinical records of the patient. The study
was reviewed and approved by the ethics committee of the National
Institute for Communicable Disease Control and Prevention, Chinese
Center for Disease Control and Prevention (CDC). A signed written
informed consent was obtained from the patient.

RNAllibrary construction and sequencing

Total RNA was extracted from the BALF sample of the patient using
the RNeasy Plus Universal Mini Kit (Qiagen) following the manufac-
turer’sinstructions. The quantity and quality of the RNA solution was
assessed using aQbit machine and an Agilent 2100 Bioanalyzer (Agilent
Technologies) before library construction and sequencing. An RNA
library was then constructed using the SMARTer Stranded Total RNA-
SeqKitv2(TaKaRa, Dalian, China). Ribosomal RNA (rRNA) depletion was
performed during library construction following the manufacturer’s
instructions. Paired-end (150 bp) sequencing of the RNA library was
performed on the MiniSeq platform (Illumina). Library preparation
and sequencing were carried out at the Shanghai Public Health Clinical
Center, Fudan University, Shanghai, China.

Data processing and viral agent identification

Sequencing reads were first adaptor- and quality-trimmed using the
Trimmomatic program?. The remaining reads (56,565,928 reads) were
assembled de novo using both the Megahit (version 1.1.3)% and Trinity
program (version 2.5.1)® with default parameter settings. Megahit
generated atotal of 384,096 assembled contigs (size range: 200-30,474
nt), while Trinity generated 1,329,960 contigs with asize range of 201 to
11,760 nt. All of these assembled contigs were compared (using blastn
and Diamond blastx) against the entire non-redundant nucleotide
(Nt) and protein (Nr) database, with e-values set to 1x10"° and 1x10°3,
respectively. To identify possible aetiologic agents present in the
sequence data, the abundance of the assembled contigs wasfirst evalu-
ated as the expected counts using the RSEM program® implemented
in Trinity. Non-humanreads (23,712,657 reads), generated by filtering
host reads using the human genome (humanrelease 32, GRCh38.p13,
downloaded from Gencode) by Bowtie2*’, were used for the RSEM
abundance assessment.

Asthelongest contigs generated by Megahit (30,474 nt) and Trinity
(11,760 nt) both had high similarity to the bat SARS-like coronavirus
isolate bat-SL-CoVZC45and were at high abundance (Supplementary
Tables1and2), thelonger one (30,474 nt) that covered almost the whole
virus genome was used for primer design for PCR confirmation and
genome termini determination. Primers usedin PCR, qPCR and RACE
experiments are listed in Supplementary Table 8. The PCR assay was
conducted as described previously® and the complete genome termini
was determined using the Takara SMARTer RACE 5'/3' kit (TaKaRa)
following the manufacturer’s instructions. Subsequently, the genome
coverage and sequencing depth were determined by remapping all of
the adaptor-and quality-trimmed reads to the whole genome of WHCV
using Bowtie2** and Samtools®.

The viral loads of WHCV in BALF were determined by quantitative
real-time RT-PCR with Takara One Step PrimeScript™ RT-PCRKit (Takara
RR064A) following the manufacturer’sinstructions. Real-time RT-PCR
was performed using 2.5p RNA with 8pmol of each primer and 4pmol
probe under the following conditions: reverse transcription at 42°C
for 10 minutes, and 95 °C for 1 minute, followed by 40 cycles of 95 °C
for 15 seconds and 60 °C for 1 minute. The reactions were performed

and detected by ABI 7500 Real-Time PCR Systems. PCR product cover-
ing the Tagman primers and probe region was cloned into pLB vector
using the Lethal Based Simple Fast Cloning Kit (TIAGEN) as standards
for quantitative viral load test.

Virus genome characterization and phylogenetic analysis

For the newly identified virus genome, the potential open reading
frames (ORFs) were predicted and annotated using the conserved
signatures of the cleavage sites recognized by coronavirus protein-
ases, and were processed in the Lasergene software package (version
7.1, DNAstar). The viral genes were aligned using the L-INS-ialgorithm
implemented in MAFFT (version 7.407)*.

Phylogenetic analyses were then performed using the nucleo-
tide sequences of various CoV gene datasets: (i) Whole genome, (ii)
ORF1a, (iii) ORF1b, (iv) nsp5 (3CLpro), (v) RdARp (nsp12), (vi) nsp13
(Hel), (vii) nsp14 (ExoN), (viii) nsp15 (NendoU), (ix) nsp16 (O-MT),
(x) spike (S), and the (xi) nucleocapsid (N). Phylogenetic trees were
inferred using the Maximum likelihood (ML) method implemented
in the PhyML program (version 3.0)*, using the Generalised Time
Reversible substitution (GTR) model and Subtree Pruning and
Regrafting (SPR) branch-swapping. Bootstrap support values were
calculated from 1,000 pseudo-replicate trees. The best-fit model
of nucleotide substitution was determined using MEGA (version 5)**.
Amino acid identities among sequences were calculated using the
MegAlign program implemented in the Lasergene software package
(version 7.1, DNAstar).

Genome recombination analysis

Potential recombination events in the history of the sarbecoviruses
were assessed using both the Recombination Detection Program v4
(RDP4)* and Simplot (version 3.5.1)*. The RDP4 analysis was conducted
based onthe complete genome (nucleotide) sequence, employing the
RDP, GENECONYV, BootScan, maximum chi square, Chimera, SISCAN,
and 3SEQ methods. Putative recombination events were identified with
aBonferroni corrected p-value cut-off of 0.01. Similarity plots were
inferred using Simplot to further characterize potential recombination
events, including the location of possible breakpoints.

Analysis of RBD domain of WHCV spike protein

Anamino acid sequence alignment of WHCV, SARS-CoVs, bat SARS-like
CoVs RBD sequences was performed using MUSCLE®®, The predicted
protein structures of the spike protein RBD were estimated based on
target-template alignment using ProMod3 on SWISS-MODEL server
(https://swissmodel.expasy.org/). The sequences of the spike RBD
domains of WHCV, Rs4874 and Rp3 were searched by BLAST against
the primary amino acid sequence contained in the SWISS-MODEL
template library (SMTL, last update: 2020-01-09, last included PDB
release: 2020-01-03). Models were built based on the target-template
alignment using ProMod3. The global and per-residue model quality
were assessed using the QMEAN scoring function®. The PDB files of
the predicted protein structures were displayed and compared with
the crystal structures of SARS-CoV spike RBD (PDB 2GHV)*® and the
crystal of structure of SARS-CoV spike RBD complexed with human
ACE2 (PDB 2AJF)™.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Sequence reads generated in this study are available at the NCBI
Sequence Read Archive (SRA) database under the BioProject acces-
sion PRJNA603194. The complete genome sequence of WHCV have
beendepositedin GenBank under the accession numbers MN908947.
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Extended Data Fig.1| Chest radiographs of the patient. (a-d), Chest computed consolidation were clearly observed, especially in the lower lung. (e), Chest
tomographic scans were obtained on the day of admission (day 6 after the onset radiograph was obtained on day 5 after admission (day 11 after the onset of
ofillness). Bilateral focal consolidation, lobar consolidation, and patchy illness). Bilateral diffuse patchy and fuzzy shadow were observed.
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Extended DataFig.3|Mapped read count plot showing the coverage depth per base of the WHCV genome.
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SARS-CoV_WH20 P_TNICP FGEVFNATKF PSVYAWERKK ADY NSTFFSTF FSNMY YK
SARS-CoV_SZ3 NI CPF-FNATKF PSMYAWERKR NSTSFSTF YKI
Bat_SL_Rs7327 NSTSFSTF YKI
Bat_SL_Rs4874 NSTSFSTF YK
Bat_SL_Rs4231 NSTSFSTFK YKI
WH-human 1 NSASFSTF YKI
Bat_SL_CoVzZC45 NSTSFSTF YK
Bat_SL_Rp3 NSTSFSTF YKI
Bat_SL_Rf1 NSTSFSTF YKI
Bat_SL_ Rm1 KMFENASRF PNIVAM.RTKISDC.A. TSESTF YK
Bat_SL_HKU3 P_TNRCPFD -FNATRFPNIYAV_RTK.SDCIA.VT-VNSTSFSTF YKEPD
Identity

416 426 436 446 456 4g6 47 485 495 510
SARS-CoV_Tor2 DFMGCVIEAWN TRNIIDAT S TGNYNYK VR‘IRI!KIR PFERDIISNVP FSPDGKPCTP - PA=NCYWPI5.V! FYTT;-l‘IP YRVAVAES FEIENAPATY
SARS-CoV_BJ01 NIDAT ICYWPENDYGFYTTTGIGYQP YRVAVAVIES F EBENAPATV
SARS-CoV_WH20 RN-ATS CYWPENDYGFYTTTGIIGYQP YRVAAVIES F EBBENAPATV
SARS-CoV_SZ3 RNIDAT§ CYWPEKDYGFYTT SGIIGYQP YRVAVAVIES F BIBENAPATV

Bat_SL_Rs7327
Ea( SL_Rs4874 RN-AT TGNY:!
it_SL_Rs4231 VIEAWI ST
WH human 1 N \AWNSNNLISK
Bat_SL_CoVzZC45 DF TGCM |AWNTAKOBVG
Bat_SL_Rp3
Bat SL_Rf1 DF TGCM |AWNTAKQDVGS
Bat_SL_Rm1 DF TGCM |AWNTAQQBQG(
Bat_SL_HKU3 DF TGCM |AWNTAKHBTG

RNIDATS

GVYTESTYDFNPNVPVAYBATRI

(b)

Extended DataFig.7|See next page for caption.



Extended DataFig. 7| Analysis of receptor-binding domain (RBD) of the
spike (S) protein of WHCV coronavirus. (a) Amino acid sequence alignment of
SARS-like CoVRBD sequences. Three bat SARS-like CoVs, which could
efficiently utilize the human ACE2 as receptor, had an RBD sequence of similar
size to SARS-CoV,and WHCV contains asingle Val 470 insertion. The key amino
acidresiduesinvolvedintheinteraction withhuman ACE2 are marked witha
brownbox. In contrast, five bat SARS-like CoVs that had been reported not to
use ACE2, had amino acid deletions at two motifs (amino acids 473-477 and
460-472) compared with those of SARS-CoV.11 (b) The two motifs (aa 473-477
and aa460-472) areshowninred onthe crystal structure of the SARS-CoV spike

RBD complexed with receptor human ACE2 (PDB 2AJF). Human ACE2 is shown
inblue and the SARS-CoV spike RBD is showningreen.Important residuesin
human ACE2 thatinteract with SARS-CoV spike RBD are marked. (c) Predicted
proteinstructures of RBD of WHCV spike protein based on target-template
alignment using ProMod3 on the SWISS-MODEL server. (d) Predicted structure
of RBD of SARS-like CoV Rs4874. (e) Predicted structure of the RBD of SARS-like
CoVRp3. (f) Crystal structure of RBD of SARS-CoV spike protein (green) (PDB
2GHV). Motifs resembling amino acids 473-477 and 460-472 of the SARS-CoV
spike proteinare showninred.
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BCoV,MHV,HCoV 0C43 and HKU1 were marked witha

canbind tosialicacid and the SARS-CoVs that cannot. The key residues" for

sialicacid binding on

brownbox.

hepatitis virus (MHV) and human coronavirus (HCoV 0C43 and HKU1) that

Extended DataFig. 8 | Amino acid sequence comparison of the N-terminal
domain (NTD) of spike protein of WHCV, bovine coronavirus (BCoV), mouse
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Extended DataFig. 9| Asequencesimilarity plot of WHCV, SARS- and bat SARS-like CoVs revealing putative recombination events.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Policy information about availability of computer code

Data collection No software was used.

Data analysis Trimmotic (v0.39): adaptor- and quality-trimming of sequencing reads
Megahit (v1.1.3) and Trinity (v2.5.1): de novo assembly of reads
Blastn (v2.7.1), Diamond blastx (v0.9.21): homology based annotation of sequencing reads and contigs
Bowtie2 (v2.3.4.1) and samtools (v 0.1.19-44428cd): read mapping and result analysis
MAFFT (v7.407) and MUSCLE(v3.8.425): sequence alignment
PhyML (v3.0): Phylogenetic tree estimation
MEGA (v5): Best-fit model of nucleotide substitution determination and trees generation
Lasergene software package (v7.1): ORF prediciion and annotation
Geneious prime (v2019): Visualization of alignment
Recombination Detection Program (v4, RDP4) and Simplot (v3.5.1): recombination analysis and similarity plot visualization
SWISS-MODEL server (https://swissmodel.expasy.org/): spike protein RBD structure prediction.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The whole genome sequence obtained in this study was submitted to GenBank with the accession number MN908947.
Fig. 1-3, Extended Data Fig. 3, Extended Data Fig. 5-9 have associated raw data.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The goal of this study was to find out the possible aetiologic agents associated with the severe respiratory disease occurred recently in the city
of Wuhan, Hubei province, China. We studied one patient, and collected bronchoalveolar lavage fluid (BALF) from him who exhibited severe
respiratory syndrome including fever, dizzy and cough. Since it is a discovery study, the number of individuals is irrelevant to the conclusions
drawn in the paper.

Data exclusions  No data was excluded from the analyses.

Replication The de novo assembly of reads was performed using two programs.
The whole genome viral sequence obtained from read assembly was confirmed by PCR assays.
The results from phylogenetic and recombination analyses were confirmed by multiple runs.

Randomization  Not applicable. The goal of this study was to find out the possible aetiologic agent associated with the severe respiratory disease occurred
recently in the city of Wuhan, Hubei province, China. Since we could obtain the BALF sample from only one patient who exhibited severe

respiratory syndrome including fever, dizzy and cough, hence, randomization was not applicable to this study.

Blinding Not applicable. Only one RNA library was generated in this study and thus no group allocation was performed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[ ] Antibodies [] chip-seq

Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology |Z| |:| MRI-based neuroimaging

0
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[] Animals and other organisms
X

Human research participants

NOXNXNXX &

|:| Clinical data

Human research participants

Policy information about studies involving human research participants

Population characteristics Recently, a severe respiratory disease emerged in the city of Wuhan, Hubei province of China. The aim of this study is to find out
the etiologic agent. Although clinic records from seven patients were available in this study, BAFL sample was only obtained from
one patient. Herein, only one patient was described in the text based on the comments by Referees.

Recruitment The patient who exhibited clinic signs of respiratory disease including fever and cough was recruited.
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Ethics oversight This study was reviewed and approved by the ethics committees of the National Institute for Communicable Disease Control and
Prevention of the China CDC. In addition, a signed individual written informed consent was obtained
from the patient.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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